
Sui Provenance Suite
Deploy what you trust. Verify what you see.

zktx.io



Can Others Verify What You Deploy?

“Trust” is still the default in Web3

● Can you prove your frontend hasnʼt been tampered with?
● Can others verify your Move package came from your repo?
● Hashes alone donʼt tell the full story.

➡ Thereʼs a missing link between GitHub and on-chain code.



● Trust is not a UX problem.

It s̓ an infrastructure design problem.

● Provenance, not as a feature — but as a new 
standard for blockchains.

● First to make end-to-end provenance native 
— on the Sui Stack.

Donʼt Trust. Verify.

https://x.com/EvanWeb3/status/1905728305569128649



The Toolkit

Sui Provenance Suite

● Walrus Sites Provenance – verifiable frontend deployment.
● Sui MVR Provenance – verifiable Move package registry.
● Notary – browser-based verification UI.
● GitSigner – secure PIN-based external signing.

➡ One suite, Full-stack provenance, and live.



Walrus Sites Provenance

1. Website (GitHub)
2. GitHub Actions (CI)

a. npm run build
b. Sigstore signs → generate 

site.intoto.jsonl
c. Walrus sites deploy (resources + 

site.intoto.jsonl)
3. Verified on notary.wal.app



Self-Verifying Example

Case Study: notary.wal.app

● Notary doesnʼt just verify others — it 
proves its own deployment.

● It is built, signed, and deployed via GitHub 
Actions using the same Walrus + Sigstore 
pipeline.

● Its .intoto.jsonl provenance is public and 
verifiable on itself.

➡ A trust tool that proves it can be trusted.



Sui MVR Provenance

1. Move Package (GitHub)
2. GitHub Actions (CI)

a. Build with sui move build → generate 
bytecode.dump.json.

b. Sign and deploy move package.
c. Sigstore signs → generate 

mvr.intoto.jsonl.
d. MVR Register Move Package (tx digest + 

mvr.intoto.jsonl)
3. Verified on notary.wal.app



From Form to Cryptographic Provenance



MVR = Move Verifiable Registry

● “V” is for Verifiable.
● Every package is signed, linked to 

commits, and reproducible.
● Metadata is traceable across GitHub 

and chain.

➡ This isnʼt just a registry — itʼs a trust 
layer.

Beyond Registration



Verifiability is Infrastructure

Built-in Proof

● GitHub → Sigstore → On-chain
● .intoto.jsonl created automatically
● Open-source, ready to use
● Proof is default, not optional

Trust at Platform Level

● wal.app is more than hosting
● It s̓ becoming a platform for provable 

dApps
● Only apps with verifiable origins are 

featured
● Users can trust what they run — by 

design

wal.app & MVR is where trust begins — with provenance, by default.



Proof Doesnʼt End at Build

We can go further:
● Audits can be registered as metadata alongside the .intoto.jsonl file in MVR.

This metadata includes:
● Who audited it
● Which commit was reviewed
● Link to the public audit report

➡ This way, expert reviews become part of the on-chain trust layer — verifiable, inspectable, 
and tamper-proof.



Trust That Grows, Not Freezes

Technical proof is only the beginning. Trust needs to grow — not stay 
frozen in time.

We build a living layer of trust:
● Bounty programs for continuous review
● Developer–user challenges to test and improve code

➡ This turns MVR into a dynamic trust ecosystem — where trust evolves, not just gets 
archived.



Links

● End-to-end provenance tooling for MVR.
○ https://github.com/zktx-io/sui-mvr-provenance

● A test repo that passes validation without any real source code.
○ https://github.com/zktx-io/sui-mvr-pass-but-fake

● Frontend provenance pipeline based on Walrus and Sigstore.
○ https://github.com/zktx-io/walrus-sites-provenance

● Frontend UI for verifying provenance files and site objects
○ https://github.com/zktx-io/walrus-sites-notary

● Live explorer to verify frontend provenance interactively
○ https://notary.wal.app

https://github.com/zktx-io/sui-mvr-provenance
https://github.com/zktx-io/sui-mvr-pass-but-fake
https://github.com/zktx-io/walrus-sites-provenance
https://github.com/zktx-io/walrus-sites-notary
https://notary.wal.app


Sui Provenance Suite
Deploy what you trust. Verify what you see.

zktx.io


