o)
WebAuthn on (@JI

zkLogin PoC

& zkix.io

OpenlD

Summary

e OpenlD is an internet user authentication standard developed in 2005, allowing the use of a
single digital ID across multiple websites.

Key Features

e Single Sign-On (SSO): Users can log in to multiple sites with one ID.
e Simplified Login Process: Reduces the need to remember multiple passwords.

WebAuthn

Summary

e WebAuthn is a standard for passwordless authentication developed by the FIDO Alliance and
W3C.

Key Features

e Passwordless Login: Uses asymmetric keys stored on user devices for authentication.
e Security: Private keys are securely stored on user devices.
e Hardware Security Authenticators: Utilizes built-in secure device biomatrics or external devices.

zkLogin

Summary

e zklLogin allows users to access blockchain without managing private keys, leveraging OpenlD
for initial user authentication.

Key Benefits

e FEase of Use: No need for passwords or mnemonics.
e Speed: Fast authentication process.
e Freedom from Mnemonic: Users do not need to remember or record mnemonics.

Relationship between WebAuthn and OpenlD

Common Goals:

e Simplify user authentication and enhance security.

Complementary Relationship

e OpenlD: Provides single sign-on (SSO) for multiple sites using one ID.
e WebAuthn: Offers passwordless, secure authentication.

e Integration Potential:
o WebAuthn adds security to OpeniD.
o zklLogin can also benefit from WebAuthn for secure key management, creating a robust and user-friendly
process.

zkLogin Integration Guide

Caching the ephemeral private key and ZK proof

As previously documented, each ZK proof is tied to an ephemeral key pair. So you can reuse the proof to
sign any number of transactions until the ephemeral key pair expires (until the current epoch crosses
maxEpoch).

You might want to cache the ephemeral key pair along with the ZKP for future uses.

However, the ephemeral key pair needs to be treated as a secret akin to a key pair in a traditional wallet.
This is because if both the ephemeral private key and ZK proof are revealed to an attacker, then they
can typically sign any transaction on behalf of the user (using the same process described previously).

Consequently, you should not store them persistently in an unsecure storage location, on any platform.
For example, on browsers, use session storage instead of local storage to store the ephemeral key pair
and the ZK proof. This is because session storage automatically clears its data when the browser
session ends, while data in local storage persists indefinitely.

https://docs.sui.io/quides/developer/cryptoaraphy/zklogin-integration#caching-the-ephemeral-private-key-and-zk-proof

https://docs.sui.io/guides/developer/cryptography/zklogin-integration#caching-the-ephemeral-private-key-and-zk-proof

zkLogin Integration Guide

Storage locations for key data

The following table lists the storage location for key data the example uses:

Data Storage location

Ephemeral key pair | window.sessionStorage

Randomness window.sessionStorage

User salt window. localStorage

Max epoch window. localStorage

Sui Signature Scheme

When a user submits a signed transaction, a serialized signature and a serialized transaction data is submitted. The serialized transaction data
is the BCS serialized bytes of the struct TransactionData and the serialized signature is defined as a concatenation of bytes of flag || sig

[pk.

The flag is a 1-byte representation corresponding to the signature scheme that the signer chooses. The following table lists each signing
scheme and its corresponding flag:

Scheme Flag

Ed25519 Pure 0x00

ECDSA Secp256k1 | 0x01

ECDSA Secp256r1 | 0x02

multisig (020K]

zkLogin 0x05

zkLogin Flow

OAuth

...... e i RN Provider®| (g
- . Service*
------ @ Enters crodential - Web Credential —
s i ZK Proving
aeieen, Service B
...... Generating Item —> Sending item

* Apps can use salt service, as pictured here, or request user provide salt

WebAuthn

pubKeyCredParams, of type sequence<PublicKeyCredentialParameters>
This member lists the key types and signature algorithms the Relying Party supports, ordered from most
preferred to least preferred. The client and authenticator make a best-effort to create a credential of the most
preferred type possible. If none of the listed types can be created, the create() operation fails.

Relying Parties that wish to support a wide range of authenticators SHOULD include at least the following
COSEAlgorithmIdentifier values:

. -8 (Ed25519)
. -7 (ES256)
. -257 (RS256)

Additional signature algorithms can be included as needed.

Problem & Solution

Problems with Existing Methods

e Security risks associated with key caching.
e Session storage is not secure and provides
an uncomfortable experience.

Solution

e The most reliable method is to manage
ephemeral keys within hardware security
zones.

Integration

Proof of Concept e

B " W s« s

e Cryptographic agility is core to Sui.

e The primary cryptography used in
WebAuthn is secp256r1, which Sui also
supports.

e Defining new signature scheme to use
WebAuthn is beneficial, but integrating
WebAuthn with zkl ogin will significantly
enhance the user experience and have a
substantial impact.

Flow

[Authenticator J [User Agent J [

A

Make Nonce

««— Create Credential —
Credential —

Make Transaction

«— Get Credential ——
Credential ——

4

[Authenticator] [User Agent] [

Relaying Party Relaying Party .
dApp OpenlD Provider Biogkehai

l < Client ID

l&——— Client ID
Q
[¢]
=
@
>
8
(<]
5 Request JWT >

< JWT

—— Request Proof >

[€«—Proof
2]
Q
=]
=)
[
@
g
S |—signed Transaction >
I \ 4 A 4

Relaying Party Relaying Party .
dApp OpenlD Provider Blockchain

Expected Benefits

Enhanced Security

e Prevent unauthorized access: Secure key management through hardware security zone.
e Ensure confidentiality of ephemeral keys: Keys are securely stored and managed.

Improved User Experience

Increased convenience: Easier access for users without the need for additional UX to security.
Longer Usage: By extending maxEpoch, WebAuthn can be used for a longer period.

e Superior Experience on Mobile: Provides the best user experience, especially on mobile
devices.

Conclusion

Importance of Integration

e Emphasize how integrating zkLogin with WebAuthn enhances user experience and security.

Summary of Expected Benefits

e Improvement in both security and convenience.
e Contribution to the mainstream adoption of blockchain technology.

Links

https://docs.zktx.io

https://zklogin.zktx.io/ (Poc)
https://github.com/zktx-io/zklogin-webauthn-poc
https://github.com/sui-foundation/sips/pull/30

& zkix.io

https://docs.zktx.io
https://zklogin.zktx.io/
https://github.com/zktx-io/zklogin-webauthn-poc
https://github.com/sui-foundation/sips/pull/30

